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Abstract

In text classification, recent research shows that adversarial attack
methods can generate sentences that dramatically decrease the clas-
sification accuracy of state-of-the-art neural text classifiers. How-
ever, very few defense methods have been proposed against these
generated high-quality adversarial sentences. In this paper, we pro-
pose LMAg (Language-Model-based Augmentation using Gradient
Guidance), an in situ data augmentation method as a defense mech-
anism effective in two representative attack setups. Specifically,
LMAg uses the norm of the gradient to estimate the importance of
a word to the classifier's prediction, then substitutes those words
with alternatives proposed by a masked language model. LMAg is
an additional protection layer on the classifier, thus does not require
additional training. Experimental results show that LMAg can im-
prove after-attack accuracy of BERT text classifier by 51.5% and
17.3% for two setups respectively.

Problem Formulation

Efficacy of Adversarial Attack on Text Classification

» Given a sentence x = {x1,...,x;} and its label y, a text

classifier f(-) is supposed to make a prediction § = f(x)
where § = vy with high probability. When f(x) = y, an
adversarial attack method A(x, y, f) generates an
adversarial sentence u where u is grammatically correct and
has the same semantic meaning as x, but f(u) # y. The
efficacy of adversarial attack is measured by after attack
accuracy on the test set D such as:

Pey)~plf (AX, Y, £)) = yl. (1)

Efficacy of Original Defense Against Adversarial Examples

» In this setup (Setup |), we generate adversarial examples by
attacking the original classifier f(-), then we evaluate the
robustness of the original classifier based on the absence of
mistakes on these examples. In this setup, the after-attack
accuracy on the test set D is defined as:

Px,y)~plf (A, y, f)) = y]. (2)

Efficacy of Boosted Defense Against Adversarial Examples

» In this setup (Setup Il), we generate adversarial examples by
attacking the robustified classifier f’(+). In this setup, the
after-attack accuracy is defined as:

Py~ (AX, Y, F)) = yl. (3)

Experiment results

Alfredo Cuesta-Infante’
IMIT LIDS, “IRD, 3Universidad Rey Juan Carlos

Method

LMAg consists of three steps:
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Adversarial Attacks on Text Classifiers

» Estimate the importance of words using the gradient of the classifier.
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» Generate multiple rephrases by stochastically masking important words in the input sentence and filling in with
alternative words using a masked language model.

» Make a prediction based on the majority of predictions on the rephrases.
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Figure 1. An overview of LMAg.

Experiment Settings

>

Reviews; (4) IMDB Movie Reviews; and (5) binary Sentiment Treebank (SST2).

>

Datasets. We use 5 text classification datasets: (1) AG's News; (2) Movie Reviews (MR); (3) Yelp

Original Classifier. For all datasets, we use the BERT-base classifier (#layers=12, hidden size=768). We

fine-tune the classifier on 20k batches (5k batches on MR and IMDB), with batch size 32. We use the
AdamW optimizer and learning rate 0.00002.

Attack Methods: We pick 5 recently proposed adversarial attack methods implemented in TextAttack: (1)

PWWS, (2) TextFooler (TF), (3) BERT-ATTACK (BA), (4) BAE; and (5) SememePSO (PSO).

» In original defense, our LMAg improves the accuracy by 51.5% in average while AT performs slightly better

with an improvement of 53.7%.

» In boosted defense, LMAg can improve the after-attack accuracy by 17.3% in average which is significantly

better than the other two baselines.

» Effect of three hyperparameters in LMAg is shown on the right.
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Figure 2: After-attack accuracy of the classifier (%) for each adversarial method (X-axis) on both setups: Setup |

(top)
(bottom)

— The adversarial examples are generated to attack the original classifier on the original test set; Setup |
— The adversarial examples are generated to attack the robustified classifier.
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Baseline Defense Methods: (1) Adversarial training (AT); and (2) Synonym encoding (SEM).
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Figure 3: The effect of hyperparameters. The left column shows
the change of after-attack accuracy on each data set, the right
column shows the change of original test set accuracy.



