In Situ Augmentation for Defending Against Adversarial Attacks on Text Classifiers

Institute of Technology Lei Xu^{1}, Laure Berti-Equille ${ }^{2}$, Alfredo Cuesta-Infante ${ }^{3}$, Kalyan Veeramachaneni ${ }^{1}$ ${ }^{1}$ MIT LIDS, ${ }^{2}$ IRD, ${ }^{3}$ Universidad Rey Juan Carlos

Abstract

In text classification, recent research shows that adversarial attack methods can generate sentences that dramatically decrease the classification accuracy of state-of-the-art neural text classifiers. However, very few defense methods have been proposed against these generated high-quality adversarial sentences. In this paper, we propose LMAg (Language-Model-based Augmentation using Gradient Guidance), an in situ data augmentation method as a defense mechanism effective in two representative attack setups. Specifically, LMAg uses the norm of the gradient to estimate the importance of a word to the classifier's prediction, then substitutes those words with alternatives proposed by a masked language model. LMAg is an additional protection layer on the classifier, thus does not require additional training. Experimental results show that LMAg can improve after-attack accuracy of BERT text classifier by 51.5% and 17.3% for two setups respectively.

Problem Formulation

Efficacy of Adversarial Attack on Text Classification

- Given a sentence $\mathbf{x}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{l}\right\}$ and its label \boldsymbol{y}, a text classifier $f(\cdot)$ is supposed to make a prediction $\hat{y}=f(\mathrm{x})$ where $\hat{\boldsymbol{y}}=\boldsymbol{y}$ with high probability. When $\boldsymbol{f}(\mathrm{x})=\boldsymbol{y}$, an adversarial attack method $\mathcal{A}(\mathrm{x}, \boldsymbol{y}, f)$ generates an adversarial sentence \mathbf{u} where \mathbf{u} is grammatically correct and has the same semantic meaning as x , but $f(\mathrm{u}) \neq \boldsymbol{y}$. The efficacy of adversarial attack is measured by after attack accuracy on the test set \mathcal{D} such as:

$$
\begin{equation*}
\mathbb{P}_{(\mathrm{x}, y) \sim \mathcal{D}}[f(\mathcal{A}(\mathrm{x}, y, f))=y] \tag{1}
\end{equation*}
$$

Efficacy of Original Defense Against Adversarial Examples

- In this setup (Setup I), we generate adversarial examples by attacking the original classifier $f(\cdot)$, then we evaluate the robustness of the original classifier based on the absence of mistakes on these examples. In this setup, the after-attack accuracy on the test set \mathcal{D} is defined as:

$$
\begin{equation*}
\mathbb{P}_{(\mathrm{x}, y) \sim \mathcal{D}}\left[f^{\prime}(\mathcal{A}(\mathrm{x}, \boldsymbol{y}, f))=\boldsymbol{y}\right] \tag{2}
\end{equation*}
$$

Efficacy of Boosted Defense Against Adversarial Examples

- In this setup (Setup II), we generate adversarial examples by attacking the robustified classifier $f^{\prime}(\cdot)$. In this setup, the after-attack accuracy is defined as:

$$
\begin{equation*}
\mathbb{P}_{(\mathrm{x}, y) \sim \mathcal{D}}\left[f^{\prime}\left(\mathcal{A}\left(\mathrm{x}, \boldsymbol{y}, f^{\prime}\right)\right)=y\right] \tag{3}
\end{equation*}
$$

Method

LMAg consists of three steps:

- Estimate the importance of words using the gradient of the classifier
- Generate multiple rephrases by stochastically masking important words in the input sentence and filling in with alternative words using a masked language model.
- Make a prediction based on the majority of predictions on the rephrases.

Figure 1: An overview of LMAg.

Experiment Settings

- Datasets. We use 5 text classification datasets: (1) AG's News; (2) Movie Reviews (MR); (3) Yelp Reviews; (4) IMDB Movie Reviews; and (5) binary Sentiment Treebank (SST2),
- Original Classifier. For all datasets, we use the BERT-base classifier (\#layers=12, hidden size=768). We fine-tune the classifier on 20k batches (5 k batches on MR and IMDB), with batch size 32 . We use the AdamW optimizer and learning rate 0.00002 .
- Attack Methods: We pick 5 recently proposed adversarial attack methods implemented in TextAttack: (1) PWWS, (2) TextFooler (TF), (3) BERT-ATTACK (BA), (4) BAE; and (5) SememePSO (PSO)
- Baseline Defense Methods: (1) Adversarial training (AT); and (2) Synonym encoding (SEM).

Experiment results

- In original defense, our LMAg improves the accuracy by 51.5% in average while AT performs slightly better with an improvement of 53.7%.
- In boosted defense, LMAg can improve the after-attack accuracy by 17.3% in average which is significantly better than the other two baselines.
- Effect of three hyperparameters in LMAg is shown on the right.

Figure 2: After-attack accuracy of the classifier (\%) for each adversarial method (X-axis) on both setups: Setup I (top) - The adversarial examples are generated to attack the original classifier on the original test set; Setup II (bottom) - The adversarial examples are generated to attack the robustified classifier.

Figure 3: The effect of hyperparameters. The left column shows the change of after-attack accuracy on each data set, the right column shows the change of original test set accuracy.

