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Abstract. In text classification, recent research shows that adversar-
ial attack methods can generate sentences that dramatically decrease
the classification accuracy of state-of-the-art neural text classifiers. How-
ever, very few defense methods have been proposed against these gener-
ated high-quality adversarial sentences. In this paper, we propose LMAg
(Language-Model-based Augmentation using Gradient Guidance), an in
situ data augmentation method as a defense mechanism effective in two
representative defense setups. Specifically, LMAg transforms input text
during the test time. It uses the norm of the gradient to estimate the
importance of a word to the classifier’s prediction, then replaces those
words with alternatives proposed by a masked language model. LMAg
is an additional protection layer on the classifier that counteracts the
perturbations made by adversarial attack methods, thus can protect the
classifier from adversarial attack without additional training. Experimen-
tal results show that LM Ag can improve after-attack accuracy of BERT
text classifier by 51.5% and 17.3% for two setups respectively.

Keywords: Adversarial Robustness - Text Classification - Data Aug-
mentation.

1 Introduction

In the past few years, adversarial attack methods on text classifiers have been
studied extensively [8,25, 16,26]. The goal of this type of attack is to rewrite
a sentence such that a text classifier returns an incorrect prediction. Recently
proposed attack methods can drastically decrease the accuracy of state-of-the-
art classifiers: the adversarial sentences they generate are semantically similar
to the original sentences and are of high grammatical quality making them hard
to detect and discriminate from original sentences [10, 5].

As adversarial attacks can effectively degrade the accuracy of a text classi-
fier, defending against such attacks has become a natural need. The effort to
defend against adversarial attacks on text classification mainly uses adversarial
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training [8,25]. However, adversarial training of a text classifier has several is-
sues. First, adversarial training are limited by the existing attack methods. Once
a better attack method emerges, the classifier needs to be retrained to defend
against the new attack, creating extra burden for developers. Second, finding an
adversarial sentence for a text classifier is inefficient and can take a few seconds
because it often involves heuristic search [25, 8] or inference of a neural language
model [10,5]. Therefore, adversarial training of a classifier for 10k steps can
take a few days, which prevents developers from efficiently deploying classifiers.
To address this issue, instead of generating adversarial sentences during train-
ing, some work [8] generates a fixed set of adversarial sentences in advance and
uses them to tune the classifier. This solution reduces the efficacy of adversarial
training, because when the classifier is improved, new adversarial examples are
needed to further robustify the classifier. Third, no consensus on the efficacy of
adversarial training has been demonstrated yet [15]: some works (e.g., [8,18])
showed that adversarial training is effective whereas others (e.g., [1]) showed it
is not. Beyond the differences in the benchmark datasets, we will show that the
efficacy of a defense method can be measured under two different setups, making
the results hard to compare (See Section 3).

In this paper, we propose a simple and elegant method to defend against
adversarial attacks by in situ augmentation — transforming the input sentence
during inference — rather than tuning the classifier. Since most attack meth-
ods modify the sentence by replacing a small portion of words in the sentence,
counteracting these substitutions is one intuitive idea to defend against attacks.
We can assume that words modified by the attack methods tend to have a high
impact on the classifier’s prediction, thus tending to increase the gradient norm.
By substituting these words, we can attempt to counteract the modifications
made by the attacker. As such, this paper proposes language-model-based aug-
mentation with gradient guidance (LMAg). In LMAg, we compute the gradient
of the classifier’s prediction with respect to the input word embeddings. We then
use the gradient norm as a weight to randomly mask words in the sentence, and
employ a BERT [3] language model to fill in masked words. Since LMAg is a
data-augmentation method at test time, it does not need additional training of
the classifier and is easier to deploy. Our experimental results show that the
proposed method is effective in defending against various attacks at a cost of
slightly increasing inference time.

2 Related Work

Significant research has been done concerning adversarial attacks on text classi-
fiers. Early works attempted to attack the classifier by injecting anomalies such
as typos [11,4]. One line of research [25, 8] uses synonym substitution to find ad-
versarial sentences. Recent works including [10, 5,24, 9] introduce a pre-trained
language model in finding substitutions so that the adversarial sentences can
be more fluent. [27] provides a comprehensive survey on existing attack meth-
ods. Adversarial attack libraries have also been developed [16, 26]. Adversarial
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training is an effective solution to protect classifiers from adversarial attacks in
computer vision [20, 14]. So it’s not surprising that similar defending approaches
have been applied to text classification. Among the attack methods mentioned
above, many [8, 10,25, 24] use adversarial training to make the classifier resist
the attacks. Adversarial training is also used in tasks such as reading comprehen-
sion [6, 23] and machine translation [2]. [7] proposes certified defense, but it can
not be applied on transformer-based models. [22] proposes synonym encoding
(SEM). SEM constructs a synonym dictionary, and maps a cluster of synonyms
to the most frequent word in that cluster to offset the adversarial perturbation.

3 Problem Formulation

In this section, we formulate the adversarial attack task and two defense setups.
Adversarial Attack on Text Classification. Given a sentence X = x1,...,x;
and its label y where [ is the length of the sentence, a text classifier f(-) is
supposed to make a prediction § = f(x) where § = y with high probability.
When f(x) = y, an adversarial attack method A(x,y, f) generates an adversarial
sentence u where u is grammatically correct and has the same semantic meaning
as x, but f(u) # y. The efficacy of adversarial attack is measured by after-
attack accuracy (A Acc) on the test set D such as: Py )~p[f(A(X,y, f)) = y].

As attack methods can successfully decrease the accuracy of a classifier, de-
fending against these attacks is necessary. The goal of the defense is to construct
a classifier f’(-) such that it retains high classification accuracy even when it is
attacked with adversarial sentences. Note that there is no constraint on how f’(-)
is constructed; it may be constructed either by tuning the classifier’s parame-
ters or by adding additional protections, such as adversarial sentence detection
and/or text transformation.

Setup I: Efficacy of Original Defense Against Adversarial Examples.
We generate adversarial examples by attacking the original classifier f(-), then
we evaluate the robustness of the robusified classifier f’(-) based on the absence
of misclassification on these examples. In this setup, the AAcc is defined as:
Puc,yy~plf (A(x,y, f)) = y]. Several works [18,22] follow this setup and show
significant improvement in after-attack accuracy.

Setup II: Efficacy of Boosted Defense Against Adversarial Examples.
We generate adversarial examples by attacking the robustified classifier f/(-). In
this setup, the AAcc is defined as: Py y)~p[f'(A(x,y, f')) = y]. A few works [8,
25] following this setup show relatively lower efficacy in defense.

The difference between the two setups is whether the adversarial examples
are generated on the original classifier or the robusified classifier. We believe
Setup II is prevailing in practice because Setup I underestimates the efficacy of
attack methods. Most attack methods [8,25, 5] stop early when an adversarial
sentence is found, but this early stop only indicates that the algorithm has
found an adversarial example against the original classifier. This adversarial
sentence may fail on the robustified classifier. But if the attack method directly
attacks the robustified classifier and runs sufficient iterations, it may still find
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efficient adversarial examples. Also, Setup II is more realistic. When a robustified
classifier is deployed, users interact with the robustified classifier rather than
the original one. Thus, it is more likely that an attacker directly attacks the
robustified classifier.

4 In Situ Data Augmentation

In this section, we introduce LMAg, an in situ data augmentation to defend
adversarial attacks. LMAg consists of three steps: (1) Estimate the importance
of words using the gradient of the classifier; (2) Generate multiple rephrases
by stochastically masking important words in the input sentence and filling in
with alternative words using a masked language model; and (3) Make a predic-
tion based on the majority of predictions on the rephrases. Figure 1 illustrates
the procedure to generate one rephrase. Algorithm 1 shows the pseudo code to
generate rephrases.

Compute the contribution of each word
pPs Wi = ||V ¢, maxy log pi||2
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Fig. 1. Rephrase an input sentence using LMAg. The input sentence is forward and
backward propagated through the classifier to compute the importance of each word.
Then the input sentence is masked according to the importance weights, and a BERT
language model is used to generate a rephrase.

4.1 Estimate Importance of Words using Gradients

Gradient information has been widely used in attack methods. In white-box
settings where attackers have full access to the classifier, gradient is directly
used to pick candidate substitutions [11], whereas in black box settings, gradient
is approximated by comparing the classifier’s output with or without a word [10].
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Algorithm 1: LMAg method.

Input: Sentence x = {z1,...,2:}; A classifier f(-) which includes the
embedding layer E(-), and upper layers g(-) which takes embeddings
and returns a probability distribution over classes; Number of rewrites
A; Mask ratio v; Hyperparameter a.

Output: )\ rewritten sentences.

results < empty list;

el,...,e — E(x);

max_log p = maxy g(ei,..., e )k;

Wiy .., w; < [Ve,max_log pli=1...

m < max(1, [l x v]);

foriinl...)\do

x®  x;

ti,...,tm ~ Catjwf,...,wi'];

for jinl...m do

|2l mask;

end

%@ « [arg max BERT(x"),];=1..1;

results.append(%x?);
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end
return results
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When building a defense, we assume that we have full access to the classifier;
thus we directly compute gradients to identify important words that contribute
the most to the classification. Let x = z1,...,z; be an input sentence of length
. We split a text classifier into two components:

£0) = ang max g (E(x)i.

where F(x) = eq,...,e; is the input embedding layer that converts the words
x; into embeddings e;, and g(-) is the upper layers that made prediction from
word embeddings. For transformer-based models, e; denotes the sum of word
embedding, position embedding and token type embedding. The output of g(-)
is a probability distribution over all classes. We use ¢()x to denote the probability
of k-th class. We find the log probability of the most likely class predicted by
the classifier (i.e., log maxy g(E(x))s), then compute the L2 norm of the gradient
with respect to the input embeddings to capture the importance weight of words.
Specifically, the importance weight of i-th word is

w; = [|Ve, log max g(E(x))l[2-

4.2 Stochastic Multiple Rephrasing

After calculating the importance weight of each word, we have to replace the
important words, hoping to counteract the adversarial attack. However, if we
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threshold the importance weight then mask and substitute words, it is possible
to mask all important words and make the sentence generated by the language
model semantically different from the original sentence. For example, in senti-
ment analysis, if we mask all the adjectives that express sentiment, then the
language model may generate a sentence with the opposite sentiment. To over-
come this problem, we used a stochastic substitute method.

We randomly sample m = |l X ] positions in the sentence using w; as
weights, where v is the masking ratio. Specifically we sample positions:

t1,. ., tm ~ Cat(w?, ..., w),

where Cat means a multinomial distribution. ¢4, ...,t,, represents the positions
being masked in the sentence. They are sampled from the multinomial distribu-
tion without replacement. The hyperparameter « is a smoothing factor. When
a = 0, the probability density for each position being masked is uniform. When
a — 00, only top-m most important words will be masked. Then we replace these
positions with a special MASK token and use BERT language model to impute
the most likely sentence as

% = [arg max BERT(x);]i=1...1,

where BERT (x) is a BERT language model. Note that all [ words in the rephrase
X are proposed by the BERT language model, although only mask m words are
masked. X may have more than m word substitutions.

Different mask positions result in different rephrases. To make the classifier
more stable, we generate A sentences for each adversarial sentence by selecting
different mask positions. We then take the majority predictions of A\ sentences
as the prediction for the input sentence.

Applying LMAg leads to an increase in inference time, because it introduces
extra computation of 1 backward propagation of the classifier, and A\ forward
propagation of BERT language model. However, the A forward propagation can
be parallelized on a GPU. So the inference time does not increase much.

5 Experiments

In this section, we compare the efficacy of LM Ag with baselines under two setups
discussed in Section 3.

Datasets. We use 5 text classification datasets: (1) AG’s News [28]; (2) Movie
Reviews (MR) [17]; (3) Yelp Reviews [28]; (4) IMDB Movie Reviews [13]; and
the binary variation [21] of Stanford Sentiment Treebank v2 (SST2) [19].
Original Classifier. For all datasets, we use the BERT-base classifier [3] (#lay-
ers=12, hidden _size=768). We fine-tune the classifier on 20k batches (5k batches
on MR and IMDB), with batch size 32. We use the AdamW optimizer [12] and
learning rate 0.00002.

Metrics: We measure clean accuracy (CAcc) — the accuracy of the classifier
on the original test, and after-attack accuracy (AAcc) — the accuracy of the
classifier after being adversarially attacked by an attack method.



In Situ Augmentation for Defending Against Adversarial Attacks 7

Name Type #C Train/Test Len‘CAcc PWWS TF PSO BA BAE

AG Topic 4 120k/7.6k 54| 92.2 29.9 9.9 208179 73.6
MR Sentiment 2 9k/1k 24| 88.1 184 94 75138 37.0
2
2

Yelp Sentiment 160k/38k 182 96.5 3.7 43 NA* 9.0 505
IMDB Sentiment 25k/25k 305 89.8 10.0 6.3 NA*18.2 46.1
SST2 Sentiment 67k / 0.9k 54| 924 147 75 81208 38.6

Table 1. Dataset details. #C means number of classes. Len is the average number of
BERT word-pieces in a sentence. PWWS, TF, PSO, BA, BAE shows the AAcc(%) on
the original classifier using the corresponding attack method.

[\

Attack Methods: We pick 5 recently proposed adversarial attack methods im-
plemented in TextAttack [16]: (1) [18] proposes the probability weighted word
saliency (PWWS), which determines the synonym substitution using both the
word saliency and the classification probability; (2) TextFooler [8] (TF) is a syn-
onym substitution algorithm with semantic similarity checker and part-of-speech
checker; (3) BERT-ATTACK [10] (BA) and (4) BAE [5] both use BERT lan-
guage models to propose word substitutions; and (5) SememePSO [25] (PSO?)
substitutes words based on sememes — the minimum semantic units, and uses
particle swarm optimization.

Details of the datasets, the CAcc, and the AAcc of the original classifier
against attack methods are shown in Table 1.
Baselines: We compare our method with 2 baseline defense methods: (1) SEM [22]:
we follow the hyper-parameters recommended by authors. We convert the train-
ing data using SEM and train the classifier using the same convention as the
original classifier mentioned above; and (2) Adversarial training (AT): we sam-
ple 10k sentences from each of the training set, then use TF to attack the original
classifier with these sentences. We use TF in adversarial training because of its
efficiency and attack efficacy. We then merge the generated adversarial sentences
with the original training set, then fine-tune the original classifier for another
5k batches. For each training batch, we sample half of the sentences from the
original training set, and the other half from the set of adversarial sentences.
Our Method: For LMAg, we set the number of rephrases A\ = 10, the mask
ratio v = 0.2, and o = 0.6. We fine-tune the BERT language model on the
training set for 5000 steps with batch size 32 and learning rate 0.00002.

5.1 Experimental Results

Does applying defense methods reduce the CAcc? Fig. 2 shows the CAcc
of classifiers after applying a defense. AT and LMAg both cause slight decrease
in CAcc in most cases. SEM results in a greater decrease in CAcc.

Are defense methods effective on Setup I — original defense? The
translucent (taller) bars in Fig. 3 show the AAcc for this setup. All the methods

4 We fail to attack Yelp and IMDB datasets with PSO because it is inefficient on long
sentences.
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Fig. 2. CAcc of the classifier after applying defense methods. NA means the original
classifier.
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Fig. 3. AAcc of the classifier for each adversarial method (X-axis) on both setups. The
translucent (taller) bars represent the AAcc of setup I — original defense. The solid
(short) bars represent the AAcc of setup II — boosted defense.

including ours successfully defend against a large portion of adversarial exam-
ples, and improve AAcc by more than 45% compared to the original classifier.
Our LMAg improves AAcc by 51.5% on average while AT performs slightly
better with an improvement of 53.7%.

Are defense methods effective on Setup IT — boosted defense? The solid
(shorter) bars in Fig. 3 show the AAcc for this setup. The AAcc is significantly
lower than in Setup I, showing that this setup is more challenging. When the
attack methods get access to the robustified classifiers and run more iterations,
they can still find adversarial sentences. SEM does not improve AAcc whereas
AT slightly improves the AAcc by 6.6% compared to the original classifier. LMAg
can improve the AAcc by 17.3% on average which is significantly better than
the other two baselines. Furthermore, LMAg achieves the best improvement on
all 5 datasets and 4 out of 5 attack methods.
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Fig. 4. The effect of hyperparameters on Setup I. The upper row shows the change
of AAcc, the lower row shows the change of CAcc. The line in each figure shows the
change of AAcc or CAcc averaged over all 5 datasets. The colored band shows the
maximum and minimum change of 5 datasets.

5.2 Effect of Hyperparameters

We further evaluate the effect of three hyperparameters of LMAg, namely the
number of rephrases A, the mask ratio v, and smoothing factor a. We tune one
hyperparameter with the other two fixed. The results are demonstrated in Fig. 4.
Effect of number of rephrases \. We measure A = 1,5,10,20 when v = 0.2
and o = 0.6. We observe that when increasing k from 1 to 10, the CAcc on
the original test set increases significantly. When k = 1, the CAcc decreases as
much as 6%. We interpret it as when 20% of the words are covered, the language
model may generate a sentence whose label is different from the original sentence,
which causes a significant drop in CAcc. Using multiple rewrites can alleviate
this problem. We also observe that the average AAcc improves when \ increases.
Effect of mask ratio . We measure v = 0.05,0.1,0.15,0.2,0.25 while A = 10
and a = 0.6. We observe that masking more words leads to more improvement on
AAcc but leading to lower CAcc. When masking more words, it’s harder for the
language model to rephrase the sentence and retain the same label; meanwhile
it is more likely to counteract adversarial modifications.

Effect of smoothing factor a. We measure a = 0.0,0.2,0.4,0.6,0.8,1.0 with
A = 10 and v = 0.2. Note that when a = 0, the mask positions are sampled
uniformly. We observe that larger a leads to higher AAcc but lower CAcc. The
reason for this is that when o becomes larger, the probability distribution of
the selected position becomes sparser. Some positions have a high probability of
being masked while others are hardly masked. In this case, the same masking
positions may be selected for multiple rewrites, which is similar to setting a
smaller .



10 Xu et al.

5.3 Illustrative Examples

Table 2 gives a few examples of using LMAg to correct the prediction of adver-
sarial sentences.

Ori (Neg) without shakespeare’s eloquent language , the update is dreary and sluggish .

Adv (Pos) without shakespeare’s eloquent dialect , the refreshing is sorrowful and unmoti-
vated .

Visualize w; without shakespeare ’ s el ##o0 ##quent dialect , the refreshing is sorrow ##ful
and un ##mot ##ivated .

R1 (Neg) without shakespeare ’ s eloquent wit , the film is sorrowful and unmotional .

R2 (Pos) like shakespeare ’ s eloquent plays , the film is sorrowful and unmotivated .

R3 (Neg) without shakespeare ’ s eloquent wit , the filmly sorrowful and unmotivated .

R4 (Neg) without shakespeare ’ s eloquent wit , the film is sorrowful and unmotivated .

R5 (Neg) without shakespeare ’ s eloquentism , miss film is sorrowful and unmotivated .

Ori (Pos) compelling revenge thriller , though somewhat weakened by a miscast leading lady .

Adv (Neg) cogent revenge thriller , though somewhat weakened by a miscast leading lady .

Visualize w; co ##gent revenge thriller , though somewhat weakened by a mis ##cast
leading lady .

R1 (Pos) cohesive revenge thriller , though somewhat overshadowed by its miscast leading
lady .

R2 (Neg) cogent revenge thriller , playedly performance by a miscast leading lady .

R3 (Pos) a entertaining entertaining thriller , though somewhat hampered by a miscast
leading lady .

R4 (Neg) cogent revenge thriller , only somewhat hampered by a miscast leading man .

R5 (Pos) a entertaining revenge thriller , though somewhat hampered by a miscast leading
lady .

Table 2. Two adversarial sentences and their rephrases generated by LMAg. Ori and
Adv indicate the original sentence and the adversarial sentence found by TextFooler
respectively. Pos or Neg means the positive or negative sentiment predicted by the
original classifier. The 3rd row visualizes w; at BERT’s word-piece level. We boldface
5 word-pieces with the largest weights and underlines 5 word-pieces with the second
largest weights. The following five rows show 5 rephrases of the adversarial sentence
generated by LMAg. We boldface the masked word-pieces. Note that LMAg may
change unmasked words. In both examples, the classifier’s prediction is corrected.

6 Conclusion

In this paper, we laid out two different setups in defending adversarial attack,
namely (1) original defense and (2) boosted defense against adversarial examples.
We show that the latter is both more realistic and more challenging. We intro-
duce LMAg, a novel in situ augmentation to defend adversarial attacks on text
classifiers. LMAg achieves comparable performance on Setup I and significantly
better performance on Setup II. Since LMAg is an in situ data transformation,
it does not change the architecture of the classifier, so it can be easily integrated
with other defense methods. Although we improved the after-attack accuracy by
17.3%, the problem of defending adversarial attack is far from being solved. In
the future, we will attempt to further improve the defense method by integrating
LMAg with other methods, and meanwhile try to improve the efficiency.
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